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Abstract Tuberculosis (TB) still remains one of the most
deadly infectious diseases. Mycobacterium tuberculosis thy-
midine monophosphate kinase (TMPKmt) has emerged as an
attractive molecular target for the design of a novel class of
anti-TB agents since blocking it will affect the pathways
involved in DNA replication. Aiming at shedding some light
on structural and chemical features that are important for the
affinity of thymidine derivatives to TMPKmt, we have
employed a special fragment-based method to develop robust
quantitative structure-activity relationship models for a large
and chemically diverse series of thymidine-based analogues.
Significant statistical parameters (r200.94, q200.76, r2pred0
0.89) were obtained, indicating the reliability of the hologram
QSAR model in predicting the biological activity of untested
compounds. The 2D model was then used to predict the
potency of an external test set, and the predicted values
obtained from the HQSAR model were in good agreement
with the experimental results. We have accordingly designed
novel TMPKmt inhibitors by utilizing the fragments proposed
by HQSAR analysis and predicted with good activity in the
developed models. The new designed compounds also pre-
sented drug-like characteristics based on Lipinski’s rule of 5.
The generated molecular recognition patterns gathered from
the HQSAR analysis combined with quantum mechanics/
molecular mechanics (QM/MM) docking studies, provided

important insights into the chemical and structural basis in-
volved in the molecular recognition process of this series of
thymidine analogues and should be useful for the design of
new potent anti-TB agents.
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Introduction

Tuberculosis (TB) is an infectious disease spread world-
wide. Two billion people (one-third of the world population)
are infected with tuberculosis. Mycobacterium tuberculosis
is responsible for 8.8 million new infections and 1.6 million
deaths each year [1]. The rise of multi- and extensively
drug-resistant strains contributes to the spread and worsens
the situation; threatening both developing and industrialized
countries. Novel drugs with activity against drug-resistant
strains are therefore urgently needed to restrain the disease
that was once thought to be under control [2–5].

M. tuberculosis thymidine monophosphate kinase (EC
2.7.4.9, TMPKmt), also called thymidylate kinase, recently
emerged as an attractive target for the design of a novel class
of anti-TB agents. TMPKmt catalyses the phosphorylation of
deoxythymidine monophosphate (dTMP) to deoxythymidine
diphosphate (dTDP) using ATP as a phosphoryl donor. This
step lies at the junction of the de novo and salvage pathways of
thymidine triphosphate (TTP) biosynthesis, which is essential
for DNA replication [6]. Thus, TMPKmt is crucial for cell
proliferation as well as survival of the organism. The elucida-
tion of the TMPK X-ray structures of both human [7] and
mycobacteria [8], and their low (22 %) sequence homology,
enhances the consideration of TMPKmt as an attractive target
for the development of selective inhibitors. Different families
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of nucleosidic and non nucleosidic compounds were reported
with Ki values in the micromolar and low nanomolar range
[9–16]. Various scaffolds were able to inhibit mycobacterial
growth validating TMPKmt as a new target for the search of
novel antituberculosis agents [17].

Previous QSAR analyses have been applied to smaller
subsets of thymidine-based inhibitors. Based on a restricted
set of 47 inhibitors of TMPKmt, Gopalakrishnan et al. [18]
have developed 3D-QSAR molecular field analysis (MFA)
models using different alignment methods. Receptor-based
alignment proved to be more predictive and was claimed to
be informative about the nature of the substituents required
for activity. More recently, we have applied the 4D-QSAR
formalism to develop QSAR models and corresponding 3D-
pharmacophores for a set of 34 5′-thiourea-substituted α-
thymidine derivatives [19], and to an extended set of 81
thymidine analogues with two corresponding subsets [20].
These studies have highlighted the importance of lipophilic
substituents on the 5′-aryl moiety, which suggests the pos-
sibility of an additional pharmacophore site responsible for
the higher inhibition potency of these derivatives. The draw-
backs to doing this 4D-QSAR analysis were largely a con-
sequence of the relatively limited size and structural
diversity of the data set used in the study, which are impor-
tant requirements for QSAR studies [20].

This scenario prompted us to investigate a larger and more
chemically diverse series of 97 thymidine-based analogues
reported as inhibitors of TMPKmt, using a specialized
conformation-independent fragment-basedmethod to develop
predictive 2D-QSAR models by employing the hologram
QSAR (HQSAR) method. It is noteworthy that structure-
and ligand-based approaches have become vital components
of many modern drug design projects [19–22]. Thus, the
generated molecular recognition patterns from HQSAR were
combined with three-dimensional molecular modeling stud-
ies, by using quantum mechanics/molecular mechanics (QM/
MM) docking, as a fundamental step on the path to under-
standing the molecular basis of ligand – receptor interactions
within this new series of potent anti-TB agents. The results
revealed important molecular requirements for the design of
new TMPKmt inhibitors with improved affinity.

Computational methods

Data set

The 97 TMPKmt inhibitors ranging from low micromolar to
low nanomolar inhibition were collected from a series of
papers by Van Calenbergh et al. and Familiar et al. [9–16].
The chemical diversity of the data set is very significant,
since it encompasses acyclic nucleoside analogues (ATA),
bicyclic thymidine analogues (ATB), 2′ and 3′ modified

thymidine analogues and thymidine 5′-O-monophosphate
analogues (ddTMP) and 5′-arylthiourea thymidine deriva-
tives (ATT). The chemical structures and biological activity
values for all compounds studied are listed in Table 1. The
biological activity expressed in Ki were converted into their
corresponding pKi (-log Ki) measures and used as dependent
variables in the HQSAR analyses. It is important to mention
that the values of Ki were selected from literature and
measured under the same experimental conditions [23],
which is considered essential for successful QSAR studies
[24, 25]. The chemical structures of all TMPKmt inhibitors
used in the modeling studies were constructed in the
SYBYL-X 1.2 package (Tripos Inc., St. Louis, USA) and
energetically optimized using the single point AM1-BCC
semi-empiric method [26] as implemented in QUACPAC
v1.5.0 (Open Eye Scientific Software, Santa Fe, NM, USA).
Hierarchical cluster analyses of the data set were carried out
within SYBYL-X 1.2.

HQSAR analysis

In this work, we have explored the molecular features relat-
ed to the biological activity presented by a series of
TMPKmt inhibitors using hologram QSAR (HQSAR) meth-
odology [27], as this technique is considered a powerful
ligand-based strategy in drug design. The HQSAR modeling
analyses, calculations and visualizations were performed
using the SYBYL-X 1.2 package (Tripos Inc., St. Louis,
USA) running on Red Hat Enterprise Linux workstations.
Parameters that affect hologram generation such as holo-
gram length, fragment size and fragment distinction are
crucial parameters that were evaluated during HQSAR mod-
el generation. The molecular holograms generated were
used as independent variables during the partial least
squares (PLS) regression analyses to derive the HQSAR
models. Leave-one-out (LOO) cross-validation was applied
to determine the number of components that yield optimally
predictive models. The patterns of fragment counts related
to increasing inhibition were used in the three-dimensional
molecular modeling studies.

QM/MM docking

To explore the 3D molecular basis of ligand – receptor
interactions for this series of thymidine analogs within the
TMPKmt binding pocket, we used the quantum mechanics/
molecular mechanics (QM/MM) docking by using the
Schrödinger QM-polarized ligand docking (QPLD) [28]
workflow.

The 3D ligand structures were prepared with LigPrep v.2.5
(Schrödinger, LCC, New York, 2011). All possible ionization
states were generated at pH 7.0 +/− 2.0 using Epik [29]. For
chiral ligands, specified chiralities were retained. The number

180 J Mol Model (2013) 19:179–192



of stereoisomers per molecule was changed from its default
value of 32 to 128. For each structure, four low-energy ring
conformations were generated. The ligand conformations
were then generated using the MacroModel package by a
mixed torsional/low-mode sampling method with the OPLS-

2005 force field [30] in implicit water without any constraints.
The lowest potential energy conformers were retained as input
for docking studies.

The X-ray crystallographic structure of TMPKmt in com-
plex with the substrate deoxythymidine monophosphate

Table 1 Chemical structure and biological activity (pKi) of training and test sets compounds

Cpd Structure R1 R2 R3 R4 X pKi

ddTMP1a CH3 H OH NHCOCH3 - 4.05
ddTMP2 CH3 H OH N3 .15

ddTMP3 CH3 H OH NH2 .92

ddTMP4 CH3 OH OH OH .15

ddTMP5 CF3 H OH OH - 4.01

ddTMP6 C2H5 H OH OH - 2.94

ddTMP7a F OH OH OH - 3.28

ddTMP8 F OH OH H .25

ddTMP9 CH3 H NH2 OH .64

ddTMP10 CH3 H F OH .55

ddTMP11 CH3 F OH OH - 3.91

ddTMP12a CH3 OH NH2 H - 2.72

ddTMP13 CH3 OH NHC(NH)NH2 OH .85

ddTMP14 CH3 H CH2N3 OPO3
2- .92

ddTMP15a CH3 H CH2NH2 OPO3
2- .98

ddTMP16 CH3 H CH2F OPO3
2- .82

ddTMP17a CH3 H CH2OH OPO3
2- .54

ddTMP18 CH3 OH CH2N3 OPO3
2- .93

ddTMP19 CH3 OH CH2NH2 OPO3
2- .50

ddTMP20 CH3 H CH2N3 OH .40

ddTMP21 CH3 H CH2NH2 OH .24

ddTMP22 CH3 H CH2F OH - 4.35

ddTMP23 CH3 H CH2OH OH .39

ddTMP24 CH3 OH CH2N3 OH .11

ddTMP25 CH3 OH CH2NH2 OH .41

ddTMP26a CH3 H CH2CH2OH OH .81

ddTMP27 CH3 NH2 OH OPO3
2- .26

ddTMP28 CH3 Cl OH OPO3
2- .72

ddTMP29a CH3 F OH OPO3
2- .37

ddTMP30 C6H5CH2 H OH OPO3
2- .55

ddTMP31a CH3 H N3 OPO3
2- .00

ddTMP32a CH3 H N3 OH .55

ddTMP33 Br H N3 OH .98

ddTMP34 CH=CHBr H OH OH .20

ddTMP35 CH2OH H OH OH - 3.09

ddTMP36 Cl H N3 OH .80

ddTMP37a CH3 H OH OH - 4.57

ddTMP38 H H OH OH .99

ddTMP39 F H OH OH

- 5

- 4

- 3

- 3

- 3

- 4

- 3

- 4

- 4

- 4

- 4

- 3

- 3

- 4

- 4

- 4

- 3

- 3

- 3

- 4

- 4

- 4

- 4

- 5

- 4

- 4

- 3

- 4

- 2

- 3.67

ddTMP40 OH H OH OH - 3.57
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(dTMP) was retrieved from the Protein Data Bank (PDB ID
1G3U, resolution 1.95 Å) [8]. The crystal waters were
removed with the exception of the active site water mole-
cules (1002, 1009, 1014, 1018, 1026, 1041 and 1050),
which mediate the interaction between the protein and li-
gand. Then, the structure was prepared with the Protein
Preparation Wizard workflow as follows: hydrogen atoms

were added according to Epik [29] calculation for pKa values
and protonation states were assigned, assigning partial charges
using the OPLS-2005 force field [30]. Following this step, the
structure underwent restrained minimization in vacuum. The
minimization was carried out using the OPLS-2005 force field
and terminated when the root-mean-square deviation (RMSD)
reached a maximum cutoff of 0.30 Å. The grid with

Table 1 (continued)

Cpd Structure R1 R2 R3 R4 X pKi

ATT41 H H - - - 4.16

ATT42 Cl H - - - 4.68

ATT43 OCH3 H - - - 4.34

ATT44a CH3 H - - - 4.44

ATT45 Cl Cl - - - 5.14

ATT46a Cl CF3 - - - 5.30

ATT47a - - - S 4.80

ATT48 - - - S 5.50

ATT49a - - - S 5.00

ATT50 - - - S 5.11

ATT51 - - - S 6.00

ATT52 - - - S 6.22

ATT53 - - - S 4.72

ATT54 - - - S 4.82

ATT55a - - - S 4.75

ATT56 - - - S 5.27

ATT57 - - - S 5.27
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dimensions of 22 Å × 22 Å × 22 Å centered on the thymidine
ring of dTMP was generated.

In QPLD protocol we used Glide Extra Precision (XP)
docking. For the Glide-XP docking runs, standard

parameters were applied including van der Waals scaling
for non-polar atoms (by 0.8) to include modest ‘induced fit’
effects, with up to 5 poses per ligand input conformation
saved. For QPLD docking runs, the output docking poses

Table 1 (continued)

Cpd Structure R1 R2 R3 R4 X pKi

ATT58 - - - S 5.31

ATT59 - - - S 5.14

ATT60 - - - S 5.59

ATT61 - - - S 5.42

ATT62a - - - S 5.66

ATT63 - - - O 5.96

ATT64 - - - O 5.72

ATT65a* - - - S 5.64

ATT66** - - - S 5.42

ATT67 - - - S 4.58

ATT68 - - - - 3.59

ATT69 - - - - 4.43

ATT70 - - - - 4.46

ATT71
NH2 - - - - 4.80

ATA72a

- - - - CO 6.38

ATA73 - - - SO2 6.57
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Table 1 (continued)

Cpd Structure R1 R2 R3 R4 X pKi

ATA74 H H CH3 - C .94

ATA75 NHCOCH3 H CH3 - C .24

ATA76 NH2 H CH3 - C .15

ATA77 H NHCOCH3 CH3 - C .03

ATA78a H NH2 CH3 - C

O 5

O 5

O 5

O 6

O 5.61

ATA79 H H CH3 - SO2 6.24

ATA80 H H Br - SO2 6.52

ATA81 - - - - .38

ATA82 - CH3 H - CO 5.72

ATA83 - Br H - C .9

ATA84 - CH3 H - CHOH

ATA85a - CH3 H - CCH3O 5.21

ATA86a - CH3 H - CH2 5.

- 4

O 5 6

5.33

85

ATA87 - CH3 H - CO 6.38

ATA88 - CH3 NO2 - C .13

ATA89 - CH3 NH2 - C

O 6

O 5.62

ATB90 O OH - - O 4.87

ATB91a S OH - - N .68

ATB92 O OH - - N

H 4

H 4.23

ATB93 NH OH - - NH 4.34

ATB94 S H - - .64

ATB95 S - - -

O 5

- 5.10

ATB96a O - - - .57

ATT97 - - - -

- 4

- 4.43

ATT arylthiourea thymidine derivatives, ATA acyclic nucleoside analogues, ATB bicyclic thymidine analogues, ddTMP deoxythymidine monophosphate

derivatives
a Test set compounds
* 3′-deoxyribonucleoside
** 3′deoxy-2′,3′-didehydronucleoside
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from Glide-XP docking with OPLS-AA (2001) partial
charges were used to obtain electrostatic potential (ESP) fit
ligand charges using the program QSite and the QM/MM
method in the ‘field’ of the receptor, and for comparison,
ESP fit ligand charges in the gas phase (free ligand; no
receptor) using QM. Single point energy calculation using
the B3LYP density functional theory (DFT) method and 6–
31 G*/LACVP* basis sets on the ligand (QM part) and the
OPLS-AA force field for the receptor (MM part) were used
for this purpose. The ligands with QM/MM modified
charges were then re-docked and re-scored into the catalytic
site using Glide-XP, and ten poses of each ligand were
saved. Finally, the poses were selected by Emodel Energy
value.

Results and discussion

The dataset of 97 thymidine analogs used for the HQSAR
analyses is shown in Table 1. The values of pKi span approx-
imately five orders of magnitude and are acceptably distribut-
ed across the pKi range values. The generation of consistent
statistical models depends on the quality of both training and
test sets in terms of structural diversity and property value
distributions. Training and test sets were carefully se-
lected in such a way that structurally-diverse molecules
of a wide range of biological activities were included in
both sets (Fig. 1). From the original data set, 74 com-
pounds were selected as members of the training set for
model generation, whereas the other 23 compounds
were selected as members of the test set for external
model validation. A statistical cluster analysis confirmed
that the composition of both training and test sets is
representative of the whole data set, as can be seen in Fig. 1.
Thus, the data set is appropriate for the purpose of QSAR
model development.

HQSAR models were resultant of a series of TMPKmt
inhibitors with antituberculosis activity (Table 1). HQSAR
relates biological activity to structural fragments. As HQSAR

models can be affected by a number of parameters concerning
hologram generation, several combinations of fragment dis-
tinction were considered during the QSAR modeling runs.
Holograms were generated using different combinations of
atoms (A), bonds (B), connections (C), hydrogen atoms (H),
chirality (Ch), and donor and acceptor (DA) as fragment
distinctions. We performed the HQSAR analyses by
screening the 12 default series of hologram length val-
ues ranging from 53 to 401 bins, initially using the
fragment size default (4–7). The patterns of fragment
counts from the training set inhibitors were related to
the experimental biological activity using the partial least
square PLS analysis. The statistical results obtained from
PLS analyses using several fragment distinction combi-
nations and the default fragment size (4–7) are presented in
Table 2.

According to Table 2, the best statistical results among all
models using the training set compounds were obtained
for model 14 (r200.94, q200.76), which was resultant
using the following combination of fragment distinc-
tions: B, C and DA, with six being the optimum num-
ber of PLS components. This indicates that bonds,
connections and donor and acceptor atoms are essential
features of the molecular structures for biological
activity.

The influence of fragment size is of fundamental impor-
tance in the generation of HQSAR models, as this parameter
controls the minimum and maximum lengths of fragments
to be encoded in the hologram fingerprint. Hence, distinct
fragment size combinations (2–5, 3–6, 4–7, 5–8, 6–9
and 7–10) were investigated for the best model (model
14, Table 2) generated with the fragment size default
(4–7). The HQSAR results obtained for several fragment
sizes are displayed in Table S1 (Supplementary materi-
al), but no improvements were achieved in the statistical
parameters.

Although a measure of internal consistency, available in
the forms of q2 and r2, is certainly important and significant,
the most valuable test of a QSAR model is its ability to
predict the activity of compounds not included in the train-
ing set. The structure encoded within a 2D fingerprint is
directly related to biological activity of molecules within the
training set, the high quality HQSAR models generated in
this study can predict the activity of new structurally-related
thymidine analogs from its fingerprint. In this way, the
predictive power of the best HQSAR model derived from
the training set molecules (fragment distinction B/C/DA;
fragment size 4–7, Table 1) was assessed by predicting the
pKi values for the test set compounds. The external valida-
tion results are listed in Table 3, and the graphic results
for the experimental versus predicted activities of both
compound sets (training and test sets) are displayed in
Fig. 2.

Fig. 1 Distribution of the biological activity values for the training set
(red), test set (blue) and complete data set (green)
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The external validation is a reliable process, as the test set
compounds are completely excluded during the training of the

model. The very good agreement between experimental and
predicted pKi values for the test set compounds indicates the
robustness of the HQSARmodel (r2pred00.89). As can be seen
in Table 3, the predicted values fall close to the experimental
pKi values, deviating by less than 0.50 log units for 16 com-
pounds, and by less than 0.95 log units for six compounds. For
only one compound (ddTMP37) the predicted value is more
substantially in error (1.01 log unit). The HQSAR model
obtained is reliable and can be used to predict the biological
activity of novel compounds within this structural class.

Besides predicting the biological activity of untested
molecules, HQSAR models should also provide important

Table 2 HQSAR analyses for various fragment distinctions on the key statistical parameters using fragment size default (4–7)

Model Distinction q² r² SEE HL N

1 A/B 0.56 0.86 0.37 257 6

2 A/B/C 0.54 0.87 0.35 353 6

3 A/B/C/H 0.61 0.88 0.34 307 6

4 A/B/C/H/Ch 0.67 0.90 0.32 199 6

5 A/B/C/H/Ch/DA 0.73 0.93 0.27 353 6

6 A/B/C/H/DA 0.73 0.92 0.27 353 6

7 A/B/C/Ch/DA 0.69 0.89 0.32 401 5

8 A/B/H/Ch/DA 0.74 0.91 0.29 401 6

9 A/H/Ch/DA 0.73 0.92 0.28 307 6

10 A/B/H/CH 0.54 0.85 0.38 199 6

11 A/B/Ch/DA 0.64 0.88 0.33 307 6

12 A/B/H/DA 0.69 0.91 0.30 401 6

13 A/B/DA 0.67 0.88 0.33 199 6

14 B/C/DA 0.76 0.94 0.24 401 6

q2 cross-validated correlation coefficient, r2 noncross-validated correlation coefficient, SEE standard error of estimate, HL hologram length, N
optimal number of components. Fragment distinction: A atoms, B bonds, C connections, H hydrogen atoms, Ch chirality, DA donor and acceptor

Table 3 Experimental and predicted biological property (pKi), along
with residual values, for the test set

Compound pKi

Experimental Predicted Residual

ddTMP1 4.05 4.88 −0.83

ddTMP7 3.28 2.35 0.94

ddTMP12 2.72 3.42 −0.70

ddTMP15 4.98 4.75 0.23

ddTMP17 4.54 4.65 −0.11

ddTMP26 3.81 4.39 −0.58

ddTMP29 4.37 4.31 0.06

ddTMP31 5.00 4.90 0.10

ddTMP32 4.55 4.80 −0.25

ddTMP37 4.57 3.56 1.01

ATT44 4.44 4.16 0.28

ATT46 5.30 4.91 0.39

ATT47 4.80 4.58 0.22

ATT49 5.00 4.53 0.47

ATT55 4.75 5.02 −0.28

ATT62 5.66 5.38 0.28

ATT65 5.64 5.64 0.00

ATA72 6.38 6.16 0.94

ATA78 5.61 6.10 0.22

ATA85 5.21 5.30 −0.49

ATA86 5.85 5.38 0.47

ATB91 4.68 4.38 0.30

ATB96 4.57 5.17 −0.60 Fig. 2 Predicted vs. experimental values of pKi for training and test
sets compounds
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hints as to what molecular fragments are directly related to
biological activity. This can be achieved through a careful
interpretation of the structural fragments incorporated to the
hologram-based QSAR models. HQSAR models can be
graphically represented in the form of contribution maps
where the color of each molecular fragment reflects the
contribution of an atom or a small number of atoms to the
activity of the molecule under study. The contribution map
obtained from the HQSAR module implemented in
SYBYL-X 1.2 uses a color scheme to discriminate individ-
ual atomic contributions to activity. The colors at the red end
of the spectrum (red, red-orange and orange) reflect poor
contributions, whereas colors at the green end (yellow,
green-blue and green) reflect favorable contributions.
Atoms with intermediate contributions are colored white.
Atoms corresponding to the maximal common structure
(MCS) are colored cyan, since it is common to all
compounds and contributes in the same manner for all
molecules in the training set. The most important frag-
ments of compounds ATT52 and ATA73 (two of the
most potent inhibitors of the data set) along with com-
pound ddTMP6 (the least potent inhibitor of the train-
ing set) are shown in Fig. 3. According to the contribution
maps, the molecular fragments corresponding to the naphtho-
sultam moiety (ATA73) and the thiourea moiety (ATT52) are
strongly related to biological affinity (colored in green and
yellow). The thymine ring is a common backbone to all
compounds into the training set, and therefore, is colored
cyan.

We also observed important structural features such as
regions with poor contributions (colored in orange and red)
that can be identified as potential targets for molecular
modification and further SAR studies (Fig. 3). The main
regions that negatively contribute to biological activity in-
clude the ethyl group at the 5-position of the thymine ring,
the heteroatom oxygen of the sugar ring and the hydroxyl

group of the 5′ position of the sugar ring (ddTMP6). These
groups could be replaced by other substituents with different
structural and physicochemical features with the aim to
increase the affinity and potency of the compounds studied
in this work. Some examples of such modifications could be
the replacement of the ethyl group at the 5-position of the
thymine ring by hydroxyl group in order to verify the
importance of electronic interactions at this position. It is
noteworthy that two of the most potent compounds in this
data set (ATA73 and ATT52) are an acyclic nucleoside
analogue and a 5′-arylthiourea derivative, respectively, with-
out the hydroxyl group at the 5′-position. This hydroxyl
group has been found as an unfavorable contribution,
according to our HQSAR model. Furthermore, the main
fragments highlighted by the HQSAR model are directly
related to important interactions that determine the pre-
ferred binding mode of the compounds studied and
TMPKmt.

A valuable drug design strategy is the integration of
structural and chemical analyses (ligand-based) with molec-
ular modeling (receptor-based) studies to better understand
the main protein–ligand interactions essential to biological
activity. It is now well recognized that the accuracy of
electric charges plays an important role in protein–ligand
docking. The QM/MM docking aims to achieve the docking
accuracy through improving the description of partial
charges on the ligand atoms. The polarization of the charges
on the ligand by the receptor is taken into account by
replacing them with charges derived from quantum mechan-
ical calculations in the field of the receptor, and re-docking
of the ligands with QM/MM modified charges can result in
improved docking accuracy. For this purpose, each dataset
compound was docked in the active site of TMPKmt, along
with its structural fragments highly related to biological
activity (positive contributions), to be used to guide the
search for intermolecular interactions within the thymidine

Fig. 3 HQSAR contribution
maps and 2D chemical
structures of the TMPKmt
inhibitors ATA73 (pKi06.57),
ATT52 (pKi06.22) and
ddTMP6 (pKi02.94)
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analogues and TMPKmt, using the QPLD docking protocol.
To validate the docking approach, re-docking was per-
formed with XP/QPLD using the X-ray structure of
TMPKmt in complex with the substrate dTMP [8]. The
RMSD of the docked pose when compared to the crystallo-
graphically observed position of the dTMP was 0.95 Å, and
thus, produced a docking mode that closely resembled the
X-ray crystal structure. The binding mode of the whole data
set was then explored by the QPLD protocol.

Figure 4 shows the best conformations for the most
potent compound ATA73 (a–b) and the least potent inhib-
itor ddTMP6 (c–d) of the training set in the active site of
TMPKmt obtained from QM/MM docking studies.

The substituents strongly related to the inhibitory activity,
which were emphasized in the fragment–based HQSAR
model, establish important hydrogen bonds and hydropho-
bic interactions within the TMPKmt binding cavity as
shown in Fig. 4 (a–b). The thymine moiety of both inhib-
itors (ATA73 and ddTMP6) binds inside the dTMP-binding
cavity, with a stacking interaction between the thymine ring
and Phe70, a hydrogen bond between the N3 of the thymine
ring and the side-chain oxygen group of Asn100 and a
hydrogen bond between O4 of thymine and the terminal
guanidinium nitrogen atoms of Arg74. Importantly, these
interactions of the thymine base are crucial for finding
selectivity for TMPKmt versus TMPKh [16].

Fig. 4 The binding pose of the most potent compound ATA73 and the
least potent inhibitor ddTMP6 of the training set in the active site of
TMPKmt obtained from QM/MM docking studies. (a) and (c) Sche-
matic representation between the compounds ATA73 and ddTMP6,
respectively, and the TMPKmt. (b) and (d) 3D representation of the
inhibitors ATA73 and ddTMP6, respectively, bound at the TMPKmt
active site. Only the main interacting residues in the pocket of the

binding site are shown in line model representations (carbon atoms are
in gray). The active site water molecules are presented in sticks
(oxygen atoms in red). The inhibitors are also presented in stick
models, but the carbon atoms are in cyan, nitrogen in blue, oxygen in
red, and sulfur in yellow. The green dashes represent the proposed
hydrogen bonds involved in binding of the inhibitor. The magnesium
ion is represented as an orange sphere
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According to the best docking conformation of the most
potent inhibitor (ATA73), Figs. 4a and b, the SO2 group at
the distal substituent established key interactions with the
hydroxyl group of Tyr39, with Asp163, Arg95 and Lys13,
mediated by two water molecules and with the magnesium
ion. Moreover, the Mg2+ appeared to be involved in a net of
hydrogen bond interactions involving the active site water
molecules and other amino acid residues, like Asp9 and
Glu166. These interactions are important because they pro-
mote the destabilization of the interaction of the substrate
dTMP with Mg2+ and suspend the catalytic process of the
enzyme [8]. Additionally, the crucial interaction of Tyr39
residue with the most potent inhibitor was emphasized in the
fragment-based HQSAR model and well observed by QM/
MM docking study, that is responsible for keeping the active
conformation of ATA73 with the double bond of the butenyl
unit fixed in the (Z) isomer. Notably, these observations are
in agreement with previous studies that showed that the (Z)-
butenyl derivatives have improved inhibitory potency
against TMPKmt compared with the (E) counterparts [10].
The structural fragments of the naphthosultam moiety were
highly related to biological activity, according to the
HQSAR analysis, and therefore, could be explained by its
interactions with Tyr39, Asp163, active-site water mole-
cules and Mg2+.

Figure 4 (c–d) reveals that the least potent inhibitor of the
data set, ddTMP6, binds to the phosphate acceptor binding
site in a very similar fashion as the substrate dTMP [31].
The 3′-hydroxyl group of ddTMP6 makes two polar con-
tacts: one with a water molecule involved in the Mg2
+coordination and one with Asp9. The 3′-OH group of the
substrate dTMP, which adopts a C2’-endo conformation in
the active site, participates in Mg2+ stabilization through
interactions involving a water molecule and Asp9, the con-
served acidic residue of the P-loop, positioning the phos-
phate oxygen of dTMP. Modifications of the 3′- position
aimed at destabilizing the interaction with the metal could
form a firm basis to design compounds that specifically
inhibit the parasite enzyme [17, 31]. Tyr39 makes a polar
contact with the oxygen atom at the 5′-position of ddTMP6,
which is the same interaction observed with the substrate,
dTMP. According to our HQSAR model, the hydroxyl
group of the 5′ position of the sugar ring reflects poor
contributions to biological activity, which could be
explained by its interaction with Tyr39 in the same position
of the substrate.

The obtained binding energies from QM/MM docking
studies for two representatives of each subset, the most and
the least potent inhibitor (ddTMP, ATT, ATA and ATB) are
listed in Table 4.

The QPLD protocol gives a more accurate treatment
of the electrostatic interactions, which results in an
improvement of the docking accuracy. The choice of

best-docked pose for each individual inhibitor was made
using a model energy score (Emodel) that combines the
energy grid score, the binding affinity predicted by
GlideScore, and the internal strain energy for the model
potential used to direct the conformational-search algo-
rithm. The ranking of ligands was based on the Glide-
Score. GlideScore, used for computing binding affinity,
is an extension of the empirical score function Chem-
Score [32], but includes a steric-clash term, adds other
rewards and penalties such as buried polar terms, amide
twist penalties, hydrophobic enclosure terms, and ex-
cluded volume penalties, and has modifications to other
terms:

GlideScore ¼ 0:05*vdWþ 0:15*Coulþ Lipo þ Hbond

þMetalþ Rewardsþ RotBþ Site

where, vdW 0> van der Waals energy; Coul 0> Coulomb
energy; Lipo 0> lipophilic contact term; HBond 0> hydrogen-
bonding term; Metal 0> metal-binding term; Rewards 0>
penalties for various features, such as buried polar groups,
hydrophobic enclosure, correlated hydrogen bonds, amide
twists; RotB 0> penalty for freezing rotatable bonds; Site 0>
polar interactions at the active site [33].

From examination of Table 4, one can conclude that the
binding affinities (GlideScore) correlate quite well with the
experimental pKi values.

Finally, we have proposed modifications and
designed new compounds based on the information
gathered from the HQSAR contribution maps. The most
important individual contributions (structural fragments)
to the observed biological activity (pKi) were inspected
in order to provide a more complete interpretation of

Table 4 QM/MM docking results of selected TMPKmt inhibitors

Cpda pKi
b GlideScore Emodelc

ddTMP2 5.15 −7.51 −114.79

ddTMP6 2.94 −5.12 −78.88

ATT52 6.22 −8.90 −127.34

ATT68 3.59 −6.44 −154.49

ATA73 6.57 −9.42 −73.04

ATA81 4.38 −7.40 −69.81

ATB94 5.64 −8.10 −58.15

ATB92 4.23 −7.01 −116.70

a For each subset, the first compound presented in the table is the most
potent and the second one the least potent of this subset
b Experimental values of biological activity
c Emodel is a specific combination of GlideScore, the non-bonded
interaction energy between the ligand and the receptor and the internal
torsional energy of the ligand conformer, expressed in kcal/mol
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the five best predictive HQSAR models (models 14, 8,
9, 5 and 6) in terms of their chemical and biological
significance (Fig. S1, Supplementary material). The
structural fragments with intermediate or poor contribu-
tions highlighted by the HQSAR models were replaced
by bioisosteric groups using as scaffolds the compounds
ATT52 and ATA73 in order to design new thymidine
analogues having improved activity. The designed mol-
ecules were processed similarly as data set molecules
and had their biological activities predicted by a con-
sensus of the five best HQSAR models (Table S2, Sup-
plementary material). The hits proposed were also
docked into the active site of TMPKmt, using the same
QM/MM docking protocol, and showed similar binding
interaction pattern with a high docking score of −10.03
and −9.42 in comparison to acyclic nucleoside ana-
logues (ATA) and score of −8.68 in comparison to
arylthiourea thymidine derivatives (ATT). Table 5 shows
the structure, HQSAR consensus predicted activity,
Glide docking score, and some calculated physicochem-
ical properties of the newly designed molecules. The
physicochemical properties of the hits were calculated
using QikProp v.3.4 (Schrödinger, LCC, New York,
2011).

The best predicted activities were found for Hit1 and Hit2,
which were designed based on the compound ATA73. It is
noteworthy that the non-nucleosidic compound ATA73 is the
most potent inhibitor of the data set, with affinity in the sub-
micromolar range (pKi06.57; Ki00.27 μM) and was proved

to be highly selective for TMPKmt versus TMPKh, without
cytotoxicity on Vero cells (100 μg/mL). However, this com-
pound showed no effect on the growth inhibition of mycobac-
teria, claimed to be due to its poor solubility [9]. Aiming at
solving this problem, the newly designed compounds have
lower molecular weight and are less lipophilic than ATA73
(MW0383.42; logP01.78). Moreover, the three hits satisfy all
the criteria of Lipinski’s rule of five [34], indicating that these
compounds are likely to be drug candidates.

In summary, the structural fragments highly related to
the inhibitory activity were emphasized in the fragment-
based HQSAR model. The presence of larger and more
lipophilic groups at the 5′-position, encompassing the
ATT, ATA and ATB derivatives, possibly represent an
additional interaction site responsible for the higher
inhibition potency of these derivatives. This finding is
consistent with previously reported results [11], showing
that α-thymidine analogues bind in the active site ‘up-
side down’ as compared to the natural substrate. The
tails [5′-substituent] of these molecules are oriented to
the outside of the enzyme through an exit channel,
which is surrounded by nonpolar and aromatic residues
including Ala35, Phe36, Pro37, and Arg160.

Conclusions

Our aim was to ascertain the state-of-the-art in the applica-
tion of fragment-based and structure-based molecular

Table 5 2D structures, predicted biological activity, GlideScore, and physicochemical properties calculated by QikProp for three proposed hits

Compound pKi
a GlideScore MW b logPc HBDd HBAe

6.05 -10.03 335.36 2.48 1 5

5.91 -9.42 334.37 3.03 1 5

5.79 -8.68 452.50 1.79 5 10

Hit1

Hit2

Hit3

a Predicted biological activity using a consensus of the five best HQSAR models, b Molecular weight, c logP (octanol/water), d H-bond
donors, e H-bond acceptors
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modeling in order to better understand the intermolecular
interactions between the thymidine analogues and TMPKmt
binding site. The HQSAR model obtained shows both good
internal and external consistency (r200.94, q200.76), with
substantial predictive power (r2pred00.89), indicating the
reliability of the HQSAR model in predicting the biological
activity of untested compounds. The generated molecular
recognition patterns obtained from HQSAR combined with
QM/MM docking provided important information into the
chemical and structural basis involved in the molecular
recognition process of this series of thymidine analogues,
elucidating important interactions between the compounds
and amino acids residues that promote the destabilization of
the substrate interaction and suspend the catalytic process of
the enzyme. The information gathered from the in silico
approaches was used to design new active analogues of
thymidine derivatives against TMPKmt with improved
physicochemical properties. The proposed modifications
aimed to keep the structural fragments that were more
important to biological activity and replace the regions with
intermediate contribution. Therefore, the insights provided
by the combination of ligand- and structure-based techni-
ques should be useful to design new anti-TB agents with
improved affinity.
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